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SUMMARY

An anelysis is made of the gust response (including bending moment)
of an airplane having the degrees of freedom of vertical motion and wing
bending flexibility end basic parameters are established. A convenient,
but accurate, numerical solution of the response equations is developed
which is very well suited for meking trend studies. An example treated
shows results which are in very good agreement with the results obtained
by a more precise but more lengthy method.

The method of determining & gust causling a known response is indi-
cated and a procedure is given for determining the response of ai air-
plane directly from the known response of another alrplane by eliminating
the common gust condition.

INTRODUCTION

In the design of alrcraft the condition of gust encounter has become
critical in more and more instances, mainly because of the ever-increasing
flight speeds. Aircraft designers have therefore placed greater emphasis
on obtalning rational methods for accurately predicting the stresses-that
develop. As a result, the number of papers dealing with the prediction
of stresses in an aircraft traversing a vertical gust has significantly
increased. (See, for example, refs. 1 to 9.) Many of the papers have
treated the airplane as & rigid body and in so doing have dealt with
either the degree of freedom of vertical motion alone {refs. 5 to 8) or
with the degrees of freedom of vertical motion and pitch (refs. 7 and 9).

lThis paper is & revision and extension of a paper entitled "The
Determination of the Response Due to Gusts of One Alrplene From the Known
Response of Another Airplane" published as TN No. Structures 40, British
R.A.E., June 1949, which was completed by Mr. Houbolt during a temporary
tour of duty with the Royal Aircraft Establishment. Since the present
paper is complete in itself, no further reference to the earlier paper
is necessary. S
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0f greater concern in the consideration of gust penetration, however, is
the influence that wing flexibility has on structural response. This
concern has-two maln aspects: (1) that including wing flexibility may-
lead to the calculstion of-higher stresses than would be obtained by
rigid-body treatment of the problem and (2) that wing flexibility may
introduce some error when the alrplane 1s used as an instrument for
meesurling gust intensity. Thus,; there are also many recent papers which
treat the alrplane as an elastic body. In most of these papers the
approach uged involves the development of the structural response in
terms of the natursl modes of vibration of the airplane (refs. 2 to 4).
Others used a more uhusual approach, as for example, reference 1, which
deals with the simultaneous treatment of the conditions of equilibrium

between aerodynamic forces and structural deformation st a number of

points along the wing span. Whatever the approach, however, the main
disadvantage of these elastic-body analyses is that they are not very
well gulted for meking trend studies without excessive computation time,

In the present paper, the case of the gust penetration of an air-
plane having the degrees of freedom of vertical motion and wing bending
is consgldered. Wing bending was chosen because designers have-expressed
greater concern about the influence of this flexibillity on gust response
then they have sbout other types of flexibllity. The paper has the
objective of trying to establish some of the basic parameters that are
involved when wing bending flexibility is included and of developing a
method of solution which is fairly well suited for trend studies without
excesslve computation time. Such a procedure would be useful in evalu-
ation studies which are intended, for example, to evaluate the effect of
such factors as forward speed, spanwise mass distribution, gust length,
and gust shape.

The equations for response (including accelerations, displacements,
and bending moments) are derived and the basic parameters outlined. An
easy numericsel solution for the response which is readily handled either
by manual or machine methods is then given. The inverse of the response
problem is comsidered briefly; that 1s, the method of determining the
gust causing a given response is indicated. Finally, on this basis, a
procedure is outlined whereby the response of one airplane may be found
directly from the known response of another alrplane without the
necessity of establishing the gust causing the known response.

SYMBOLS

& slope of 1ift curve

an deflection coefficlent for nth mode, function of time alone

£
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aspect ratio of wing
span of wing p—
chord of wing

chord of wing midspan

Young's modulus of elasticity

8 ——

nondimensional gust force, u[\ %}'W(S - 0)do

0
external applied load per unit span
acceleration due to gravity
distance to gust peak, chords

bending moment of inertia

nondimensional bending-moment factor (Mj = Kj % pUVMc )
0

aerodynamic 11ft per unit span of wing due to vertical motion
of the airplane -

aerodynamic 1ift per unit span of wing due to gust

mass per unit span of wing

net incremental bending moment at wing station J

moment of wing area about spanwise station under consideration

generalized mass of nth mode

incremental number of g acceleration
load intensity per unit spanwise length

distance traveled, 2L t, half-chords _ -
o e

wing area
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time, zero at beginning of gust pénetration .. = . —
vertical velocity of gust .

maximum vertical velocity of gust_ _

forward velocity of flight T

total welght of airplane

distance along wing measured from alrplane center line
deflection of elastic axis of wing, positive upward

deflection of elastic axls in nth mode, given in terms of a
unit—tip deflection S

response coefficient based on ay, T
- Ueg

én

second derivative of 2z, with respect to s

second derivative of 2z with respect to s

bending-moment response factor, ratlo of bending moment _
obtalned for alrplane considered flexible to bending moment
obtained for airplene considered rigid

distance interval, half-chords

M Co

reduced-frequency parameter, o7

nondimensional relative-density parameter,

apcyS

B,

nondimensional bending-moment parameter, ———
a.;:acoMco

mass density of air

function which denotes growth of 1Ift on rigid wing entering

& sharp-edge gust (Klssner function)
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Wy, natural circular frequency of vibration of nth mode

1-9 function which denotes growth of 1ift on an airfoil following
a sudden change in angle of attack (Wagner function)

6=1-0

Subscripts:

J spanwise station

n netural modes of vibration

m number of distance intervals traveled

Notation:

l l column matrix

[ ] square matrix

Dots are used to denote derivatives with respect to time; primes
denote derivatives wilth respect to s or o.

ANALYSIS

Equations for Structural Response

Equations of motion.- Consider an airplane flying horizontally into
vertical gusts, and suppose that it 1s desired to include wing bending
flexibility in determining the stresses induced by these gusts. The
problem is actually one of determining the response of an elastic wing
subject to dynamic forces. For dynamic forces of intensity F per unit
length, the differential equation for wing bending is, if structural
damping is neglected,

2
O pr 3N . .y (1)
8y2 By2

where w 1is the deflection of the elastic axls referred to a fixed
reference plane. The task of determining the deflection that results
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from the applied forces F may be handled conveniently by expressing
the deflection in terms of the natural free-free vibration modes of the
wing. With regard to the flight of an alrplane through gusts, exami-
mation of & number of acceleration and strain records that-have been
taken in normal flight with several different aircraft shows thet the
response to gusts 1ls composed primarily of a rigld-body vertical trans-
lation and fundemental-bending-mode excitation of the wing. Thus, the
assumption is made in the present anaslysls that the response may be given
with fair accuracy by considering only these two degrees of freedom.
This assumption is probably invalid when the alrplane is flying near the
flutter speed, for then a large amount of coupled bending-torsion dis-
placement may occur. {See ref. 3.)

The wing deflection is thus assumed to be given by the equation
W= ag + agw; (2)

where w; 1s the deflection given in terms of a unit tip deflection
along the elastic axis of the wing for the fundamental mode, and ag
and a; are functions of time glone. In this form aq denotes the

free-body vertical displacement of the airplane (in this case the dis-
placement of-the nodal points) and a1 is the part of the wing-tip

deflection which is sssoclated with the fundamental mode, as 1llustrated
in the following sketch:

, 81w (3) 1.,

- - __gp
I—*y

The use of symmetrical modes implies that only the symmetrical gust is
to be considered herelnafter. o ' '

Reference plane

Substitution of equation (2) into equation (1) yields

2 3w » g
8.1 'g? EI -a?]—' = -m(ao + a-lwl) + F (3)
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From the following relation which expresses the condition for natural
fundamental-mode vibration

82 B Wl _
S—y-é- EI y— = a.»lzmwl

equation (3) may be written
alaiemwl = —m(éo + lel) + F (%)

where ay is a natural circular frequency of vibration of the funda-

mental mode., If this equation 1s integrated over the wing span and use
is made of the following known orthogonality condition of the free-body
and fundamentel modes:

b/2 o
JF mw; dy = 0O (5)
b/2 -

the following equation results:

b/2 I
Mefo =“[b/2 F dy (6)

vhere My is the airplane mass. Now, if equation (4) 1is first multi-
plied through by w; and then integrated over the wing span and use is
made of equation (5), the following equation is obtained:

. o b/2
M8y + oy Myaq = f Fwy dy (7)
b/2

vhere M; is the generalized mass for the fundamental mode, that is,

b/2 -
My =L/\ mwlgdy. Equations (6) and (7) represent, respectively,

~b/2 -
the equations for free-body motion and fundamental wing bending and can
be solved if the forces F are known.
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For the present case of the airplane flying through a gust, the
force F is composed of two parts: a part designated by Ly due to
the vertical motion of the airplane (including both rigid-body and
bending displacements) and & part Lg resulting directly from the gust
(this latter part is the gust force which would develop on the wing
considered rigid and restrained against vertical motion). These two
parts are defined (see refs. 1 and 3) in the equation of F as follows:

t t
F =Ly + L =-%pcvfo wir - ot - 'r;_]d'r +-—% pcV/;_ ay(t - T)ar (8)

where 1 - ¢(t) is a function (commonly referred to as the Wagner
function) which denotes the growth of 1lift on a wing following a sudden
change in angle of attack and for two-dimensional incompressible flow
is given by the approximation _

: -0.09%t -0. 6%t -
[1- ¢(tﬂA=w =1-0.165% =~ ¢ -0.33% ¢ (9)

end ¥(t) 1is & function (commonly referred to as the Kussner function)
which denotes the growth of 1ift on a rigid wing penetrating a sharp-
edge gust and for two-dimensional incompresgible flow 1s given by the
approximation - L . -

-0.26%¢ 2Lt
E”(tﬂA =1-03  © -0.5 (10)

An additional term which involves the epparént air mass should be included

in equation (8); this mass term is inertial in character and may be
included %ith the structural mass (see ref. 1) although it is usually
small in comparison. The lift-curve slope -a may be chosen so as to
include approximate over-all corrections- for aspect ratio and compressi-
bility effects.

If w as given by equation.(2) is substituted into equation (8)
snd the resulting equation for F is substituted into equations (6)
and (7), the following two equations are obtained for the case of a
unlform spanwise gust:

EMO t Sl t L :
VS 8o = -fo ('alo + 5 'a‘.l)E. - o(t - T)jaT +/; ay(t - mydT  (11)

I

1! ”I!i



2E

NACA TN 2763 9

2 t
M ., o2 f(sl.. 52..)[ ]
a; + 87 = = —=an+ —a 1 -0(t - 7)1d7 +
apVs * apVs L o \S 0" % "1 ( )
s, [,
—lf uy(t - T)daT (12)
SJg
where (because of mode symmetry)
b/2 A
S =2 c dy
0
b/ 2
sl=2fo cw) dy (13)
b/2
Sz =2 CWlad.y
“Jo J

Equations (11) and (12) may be put in convenient nondimensional
form by 1lntroducing the notation

8 = % t or o= g—g— T (1k)
_ v
Zp = Tcg 8n (1.5)

where co 1is the midspan chord of the wing and U is the maximum

vertical velocity of the gust. With this notation, equations (11)
and (12) may be written

4
-~

KaZa = Efs(z "+rz")[l ¢(s-aﬂdo +fsgl’lf(5 o)do ..-(.16)
0“0 o 0] 141 0 U
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0
g
4 -
ry %r V(s - o)do (17)
0
where
&M )
Ho = apcdS
oy = SMl
1 apcgS
. > (18)
A =Cu-|- ]
ev
S
1
I'l —-E—
Sp
1'2 ='§ J

and & prime denotes a derivative with respect to o. Equations (16)

and (17) are the basic response equations in the present analysis. The
five parameters sppearing in these equations and given by equations (18)
depend upon the forward velocity, air density, lift=curve slope, and the
airplane physical characteristics: the wing plan form, wing bending
stiffness, and wing mass distribution. Experience has shown that vari-
atlons in the physical characteristics cause significant variations in
the first three of the five parameters, while the last two vary only to
e minor extent. The first three are -therefore the most basic param-
eters; Uy is a relative-density factor, frequently referred to as =

mass parameter, and is associated with vertical free-body motion of the
airplene; Wp, similar to pg, is the mass parameter associated with the

fundemental mode; and A by 1ts nature may be interpreted as a reduced-
frequency paremeter similar to that used in flutter analysis.
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It is significant to note that, if any one of the three quanti-

ities zgy, 2z, and u appearing in equations (16) and (17) is specified

or known, the other two may be determined. Thus, if the gust is known,
the response may be determined, or conversely, if either z5 or z; 1is

known, the gust may be determined. A useful equation relating zg and
z| may be found by combining equations (16) and (17) so as to eliminate
the integral dealing with the gust. The result is the equation

S
u r 1 "
ey o) + 2(1“?’ ) rl)fo w2 - ate - s = wgzg” (29)

which is used subsequently.

It may also be of interest to note that uozo" in effect defines a

frequently used acceleration ratio. From equations (12) and (11), the
rigid-body component of the vertical acceleration may be written

‘a — }:FVU "
&0 T g5 20

or, when expressed in terms of the incremental number of g's,

An acceleration factor Ang based on quasi-steady flow and peak gust
velocity is now introduced according to the definition

angi = § oSV

<

The ratio an is thus found to be
Ang:
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I

Where the gust shape 1s represented analytically and the unsteady= R
1ift functions are teken in the form given hy equations (9) and (10),
solution of the response equations may be made by the Laplace transform
method, but such a solution is more laborious than desired. Therefore,
8 numerical procedure which permits a rather rapid solution of the equa-
tions has been devised and is presented in a subsequent section. It may
be well to mention, however, that the response equations are suitable ———
for solution by some of the analog computing machines, : T

‘n
I

fi il

Bending stresses.- The bending moment and, hence, the bending _
stresses that develop in the wing due to the- gust may be found as ) -
follows: The right-hand side of equation (1) defines the loading on
the wing; suppose this loading is noted by p, then

e

p=-mv+F _ =

By use of equations (2) and (8), and the notation of equations (lﬁ)
and (15), this equation becomes

8 . )
D = -m %Yg( O" + 7y wl) - apcvq/p (zo" + Zl"Wl)[? - o(s - ci]do +
(0] o) ) ) -

8 i o e :
g pc\/:/n u¥(s - o)do T ' c =
2 0 - | S

if the moment of this loading is taken about a given wing station, =
say Yy the following equation for incremental bendlng moment at that =

station would result:

b/2 . — ) _ ____ .
My =f / p(y - yj)dy B

yj - - R

Lvy , /‘S ' '
= - ——(Mp 20" +Mpy_ 2 ‘)-aVU (M zq" + M z")[l- - ]dcr+
oy ( 120 +Mm 21 P o (g0 * Moy 21 =~ 0(s - o)

=] L=
a . ) ) . .
5 pVMFQJQ w'y(s - o)do ) B _ - (20)
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where the M's Ybearing double subscripts are first moments defined as
follows: '

b/2 ’ b/2 W
R N
> (21)
b/2 b/2
ty = mn(y -y Moy = f (Y - Y)W
73 73

and y'j is the station being considered. Division through of eque-

tion (20) by the quantity % pVUMCO gives the following equation which
is considered to define a bending-moment factor Kj at wing station ¥y

X, = M
2 ovuM,

2 0

8Mm0 1" Mm]_ " 8 " Mcl "
_apcoMco<Zo + H‘S Z]_) - 2/; <ZO + ﬁ% Zq )E. - o(s = o'):,d_o' +

"

k/;s %} V(s - o)do (22)

The factor % pVUMc0 mey be regarded as the maximum aerodynamic bending

moment that would be developed by the gust under conditions of quasi-
steady flow and with the wing consldered rigid and restrained ageinst
vertical motion at the root. The bending-moment factor K3 may thus
be seen to be the ratio of the actual dynamic bending moment that occurs
to this quasi-steady bending moment and therefore may be regarded as a
response or an alleviation factor.
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A more convenient form for the bending-moment factor may be
obtained by solving equations (16) and (17) simultaneously for the

8 8
quantities f zo"[l - o(s - o)|do and f zl"[l - &(s - cﬂdc and
0 ) - 0

substituting these values ilnto equation (22). With these operations the
following equation results:

KJ-_-_.EJ_

Tory - T Ty - T ry - T
1 2 1 3 1 2
————32 Ho - 'qo)zo" ¥ "M z" + L3 BqA2Zy

o - T, I‘12 - To r12 = To
(23)
where
ﬁ
M

r = -.—c—l-
3 Mco

I (24)
o = T o >

8Mm:L

nl B apcoMCO

It is seen that, when bending moments are being determined, three addi-
tional basic parameters (egs. (24)) appear. The similarity of 7,

and n to Ko and Hq is to be noted; first moments of masses and
areas are involved rather than masses and areas. '

Reduction torigld case.- It may be of'interest to show the reduc-
tion of the response equation to the case of the airplane considered as
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LY

a rigld body. Thus, if 2z 1s equated to zero in equation (16), the
following equation for rigid-body response is obtained:

boZo" = _j;s 2" [1 - 0(s - o)]as +j;s L y(s - g)do  (25)

If zy" 1is set equal to zero in equation (22) and use is made of

equation (25), the following equation for the bending-moment parameter
for the rigid-body case is obtalned

Ky = (o - 10)2%0" (26)

1
where Zg

is the acceleration of the airplane considered as a rigid
body. ' ' o

Matrix Solution of Response Equations

In this section a rather simple numerical solution of the response
equations (16) and (17) is presented. The procedure is readily adapted
to either manual or punch-card machine calculations.

The derivation proceeds on the basis that the response due to a
given gust is to be determined. The airplane, just before gust pene-
tration, is considered to be in level flight and hence has the initial
conditions that the vertical displacement and verticsl velocity are both

zero. These conditions mean that 2z,, 27, 32g', and z;' are all zero

at s = 0. The gust force can be shown to start from zero and, there-
fore, the additional initial conditions can be established that zo"

and z," are also zero at s = O. By the numerical procedure, solution

for the response at successive values of s of increment ¢ will be
made and, for the case being considered, it is found advantageous to
golve directly for the accelerations rather than the displacements.

In order to mske the presentation more cbmpact, the following
notation is introduced:

B = Zl ’ (27&)

i
|t
i| i
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and. ot

f(s) =\/; %% ¥(s - o)do ' (270) R

With this notation, equation (16) would app€ar simply as S =

s .
bt = -%/2 (a + rlB)G(s - ¢)do + f(s) (28)

In accordance with numerical-evaluation prdcedures, the interval ' —-
between O and s 1is divided into & number of egqual stations of '
interval € so that s = me. The product of (a + rlB) and 6(s - o)

is assumed formed at each station and, with the use of the trapezoidal
method for determining areas, the unsteady-lift integral in equation (28)
may be written in terms of values of a and B at successive stations
asg follows, where the mth station corresponds to the value sg: e TT

xmhﬂ

4

8
- : : 1
\/; (a +—rlB)9(s - o)do = e(em_lal + Oy s + o 0 .+ Ojop g+ 5 eoam) +

-~

S
vy (6 18y *+ BnoBp + . -« *+ 6181 + & 6ofy)

(29)

in which 6g, 63, . . . are, respectively, the wvalues of the T T
1-¢ functionat =0, 8=¢, ... (ao and B, do not appear

because of the initial conditions). With this equation, equation (28)

may be written at various values of 8 or at successive values of m; oo
the result, for example, for m =1 1is : . -

p'OCll = _Eeoql - Grleoﬁ_l_ +—fl B ) R _:__

and for m = 2,

hodp = -€(261a; + Bap) - € (26,8) + Befy) + £p | L=



vhere f£; and fp are the values of the gust-force integral at B = ¢ and 8 = 2¢. The
equations thus formed may be combined in the following matrix equaticn:
_ — - -
Kot 8¢ ay T3 8p¢ P1 1
261€ Ko + eOE an 21‘1913 1‘1906 BE f2
2925 261‘:' |J.0 + QOE 0.3 21'1926 21'1916 I‘leoﬁ B3 _ f3 (303')
20 1 EBmFQE . . poq-eog o, 2r19 1€ 2r, 0 e r19CF Bm fh
which mey be abbreviated
[alle] + [2]le} = |£] (300)

Ao o oL . __¥

The simplicity of the matrices A and B, and all square matrices to follow, is to be noted
the matrices are triasngular and all elements in one column are merely the elements in the

previous column moved down ope row. Thus, only the elements in the first columns have to be
known to define completely the matrices.

Now instead of considering directly the second responBe equation, equation (17), 1t is
expedient to consider equation (19) which ie repeated here for convenient reference

ﬂ._( n 2 ) (fz_ )/-\ﬂ " _ "
Y 2(”1 - )] oz 8(s -~ g)do = oo

I O

ChS

€9,z NI VOVN

LT



According to the derivation presented in the appendix, the value of 2 at a = me may be
spproximated in terms of the past-hiatory value of z;" by the following equation:

T ' 1a] (31
ey o

vhere By, Boy, . . . are the values of 2z," at s =46, 8=2¢ .. .. If this equation is
used to replace z; in equation (19) and the unsteedy-1lift integral is manipulated similarly

to the integral in equation (28), equations are obtained for successive values of m which
involve only the unknowns « and 8. The results may be cambined in the followlng matrix
equation: .

:_E: 1+ ‘\—EA-.'E.)+(}‘—--1'1)GGE T By b
1\ &6/ \¢\ 1 1
’-‘rlf 222 +I2G%-rl) 8:¢ Erll(nl?g—z):fe_l?; rl) 8t '- Bo| o2
2 ;—i— 22q% 4 IE(—;‘% -rl) 8,0 l—::'% 22624 2@-12 - rl) 6,6 Eri-(l+ }%E) +G—lg—r1)90k ' +33 =iglag| (322)
(m -1)% ;2&_'2'*‘ 2(% - 1‘1) 6y 18 (m- 2);1]‘ 2%l 2(% '1'1) Oy oF v %(H L%E) +(%- rl)eoe P =

which may be written

(] fel = wols| - I (325)

ot

€9lz NI VOWN
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The square matrix C 1s seen to be similar to the other square
matrices in that it is triangular with all the elements in one
column made up of the elements in the previous column moved down one
TOW.

An equatioﬁ in |B| alone is obtained by substituting ’al from
this eqbation into equation (30) to yield T

LE + B}l - Ble - 1] (53

which is the basic response equation relating B (that is zl") to the

gust force. This equation represents a system of linear simultaneous
equations where the order of the matrix is arbltrary; that is, the equa-
tions may be written up to any desired value of s = m€. The solution
for response can therefore be carried on as far as desired. Fortunately,
the equations are of such a nature that simultaneous solution is not

required. As mentioned, each of the matrices [A], [B], and [C] 1is

triangular with 8ll elements 0 above the main diagonal and with all
elements on the main diagonal of each matrix equal; therefore; the main

dlagonal elements of ﬁﬂ will also all have the same velue and the
elements above this diagonal will be 0. If each element on the main
diagonal of [D] is denoted by d; snd [Dy] is the matrix D with

the main dlagonal elements replaced by O's, then

O] =4 [T + [Dl]

With this equation, equation (33) may be written

= L] - L N
o] = 2l - o] lel | (34)



20 NACA TN 2763

Expanded, this equation has the form -

By £ 0 Bl .
Ba o dy O Bo

B3 f3 dz dp 0 B3

B)-I- = _l_ f)_‘. --]-'— d)-l‘ d3 d.2 0 Bll- (35)

dy dy
B5 fB d5 dh d3 d2 0 B5
. L-: . . -l— .

It can be seen that a step-by-step solution for the successive values
of B may now be made; that is, B; 1is solved for first then, with B,

established, B» 1s solved for, and so on as far as is desired. With '

the value of |B| thus established, solution for |a] may now be made

directly from equations (32). Values of the displacements Zg and Zq -

may be obtained directly from o and B; z| may be obtained from equa-
tion (31); and 2z may be obtained from this same equation with B
replaced by «a. =

Some mention should be made with regard to the selection of the time - e
interval €. A rough guide to use 1In selécting ¢ can be obtained by
considering A, which appears as the characteristic frequency in most
response calculations. The periocd based on this frequency would be

Ty = %F. BExperience has shown that a time interval in the neighborhood
of 1/12 of this period ylelds very good results (in general less than
1 percent ‘error); accordingly, a reasonable guide in choosing ¢ would

be the equation ¢ ® é%. Some convenient value near that given by this

equation should be satisfactory; in general, it will be found that ¢
may be--1 or greater.

The procedure thus outlined provides a rather rapid evaluation of
the response due to a prescribed gust. With the response thus evaluated
the bending mcment at any value of s or the complete time history of
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bending moment may be found by application of equation (23). It should
be evident that, if response values for either z3" or 2z;" are known,

the gust causing this response can be found by suitable manipulstion of
equations (30) and (32). Thus, if 2zy' is known, B in equations (30Db)

and (32b) may be eliminated to give the equation

{00 + woB ™} 1o = Lo

Direct substitution of zy" in this equation allows |f| to be deter-

mined. In most practical cases the second term in equation (30b) con-
tributes only a small amount and may be dropped with little resulting
error 1n the gust force. The equation for |f| 1s then simply

[A]]e] = I¢]

Determination of Response of One Ailrplane From
Known Response of Another Airplane

In general, a given gust condition produces different responses
either for two different airplanes or for the same airplane with dif-
ferent losding conditions or forward velocity. It would be expected,
however, that the response of the two ailrplanes could be correlated
through the common gust condition. This correlation may be demonstrated
quite easily by means of the equations given in the preceding section.
The case to be treated is as follows: The time history of bending
moment due to a gust is assumed to have been measured in one sirplane
and it is desired to calculate directly from this time history what the
bending moment due to the same gust would have been 1in another airplane.
Although the derivation 1s presented in terms of bending moment, a
gimilar derivation could be made in terms of either accelerations or
displacements.

If use is made of equation (31) to write the successive values of
the displacement 2, 1in terms of the accelerations,' the bending-moment

factor, equation (23), may be written in terms of the accelerations alone
and the following matrix equation for K may be formulated:
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where

1
2

“3

By % B
Bo 1 %-
) 1
e + he
m-1 L
Pm L c
_ rjr3 = rp
A== o = Mo
i< - 15
Ty - T
e=_lT"i“l'n.l._
1 - T N

rN =-Tr o
-T2
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(36a)

With the use of equations (32) this equation may be written

where

Kl = Glel

] - I:‘%O[C] + o[f] + ne [G]]
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in which [I] 1s the identity matrix and

-;
5
1
Loz
1
2 1 3
[¢] =
- L1
m 1 . z

Substitution of the value of B as obtained from equations (36) into
equation (33) glves the following relation between the gust forces and
the bending-moment parameter:

2| = BIE™|ka (38)

The gust-force matrix Ifl (see eq. (27b)) may be expressed in

terms of the gust velocity by the following process: It is assumed that
the inltial vertical velocity of the gust is zero and that successive
values of gust velocity of increment ¢ are designated by U, U,

ug o o o oo First-order difference equations are used to approximste the
slope of the gust velocity, so that, in general,

u'm=M

2¢

If this equation is used and the integral equation (27b) is handled by
the trapezoidal integration method similar to that used for equation (29)
the gust force may be written in terms of the successive values of gust
gradient so as to form the following matrix equation:
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B Tlu v
£, ¥y T%
u
f2 \lfe Wl -Fz r
= & (39)
2 u
f3 ‘1"3 - "lfl ‘l"e _‘If_l —-63'
u)_l- _
fu "h'_ - \lfg \V3 - \lfl \lfg ‘Jfl —U— _
L. -

where Wl, wg,__w3 . . . are successive-values of the—V¥ function. e
Substitution of this equetion into equation (38) allows for the solution

of |%1 in terms of the parameter K as

=[] (0] (] kg (50)

Qe

where -[y] is the square matrix in equation (39). Different airplanes

flying through the same gust will experieﬁce the same vertical gust .
velocity for equal absolute distances of gust penetratlon; that is,

(V) (V)

airplane 1 = airplane 2

i

From equation (14), then, the following conditions must prevail:

—~
[e2]
[¢]
O
~
[
i}

(sco)2
(41)

= (eco)2

Lan
m
O
O
~
o
I

where the subscripts 1 and 2 denote airplane 1 and 2, respectively. =
Satisfaction of the latter condition insures that the gust velocity as [
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compared. This common gust condition may therefore be eliminated to
yield the result

(B k], - (Bl B ),

If it is assumed that K for airplane 1 is known, then K for air-
plane 2 may be written

Ko = (@B [mE ], e

where again the time interval chosen for the two airplanes must satisfy
relation (41). Thus, if the bending moment due to a given gust sequence
is known for one asirplane, the bending moment that would develop in
another airplane encountering the same gust sequence can be determined
from this known bending moment by the use of equation (42). If the mid-
chorde of the two airplanes are equel, the time interval may be taken
equal and equation (42) reduces to

Kl =[E@E L [EE K], e

SUMMARY OF CALCULATION PROCEDURE

As & convenience, a summary of the basic steps necessary for calcu-
lating the response of an airplane to a gust 1s given as follows:

For accelerations and displacements:

(1) With the use of the fundamental mode, wing plan form, and mass
distribution, calculate the quantities uo, By s A, ry, and r, as

given by equations (18).

(2) Choose the time interval e¢. A convenient rule of thumb is
1

€= % but for most cases ¢ = 1 should glve satisfactory results.

(3) Determine values of the unsteady-iift function 6 =1 -0 at
successive multiple intervals of e. (See fig. 1.) Also determine
corresponding values of the gust-force integral f(8), equation (27b).

As an aid, curves for f(s) are presented in figure 1 for the sharp-edge
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gust and in flgure 2 for various-length sine gusts, sine2 gusts, and
triangular gusts. (The curves in fig. 1 have been obtained from

eqs. (9) and (10). These approximations, although rather accurate for
the lower values of 8, are noted to cross; actually, they should not

cross and are known to have the same asymptotic approach to unity.)

(4) FPram the following definitions:

By = ug + 96

Am = Eeem_l (m > l)
Bl = rl€90
Bm = 2rl€9m_l (m > ]_)

_M )2 Tp
Cl—ﬁ(l+-6—+-fi-—rl€eo

Cp = (m - l);% e2 + 2(;% - xj)aem_l (m >1)
set up the following matrices:
iAl -
Ap A
[A] = Ay By Ay
Ah A3 A2 Al Y
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Then calculate the maetrix
b] - AB1E] + [

(5) Solve for the values of B (which equals zl") from equa-

tion (33), by the method outlined following equation (33). (See
eq. (34).) The values of zy and a (which equals zo") can then be

calculated from equations (31) and (32).

For bending moment:

(6) In order to compute bending moment, determine r > TNg» &ad ng
as given by equations (24), where Mmo, Mml’ MCO’ and Mcl in these

equations depend on the particular wing station being considered and are B
given by equations (21).
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(7) Determine bending moment by use of-equation (23) with the o
values of response already established. This equation may be applied '
directly to any desired time value. Maximum bending moment usually
occurs very close to the time when z; 1s a maximum.

EXAMPLES

Example A.- In order to provide an illustration and give an idea
of the accuracy of the present analysis, the response t0 a sharp-edge
gust of the two-engine-airplane example considered in reference 1 was
determined. The welght distribution over the semlspan, the wing-chord
distribution, and the fundemental bending mode are shown in figures 3,
L, and 5. The frequency and deflection of the fundamental mode were
calculated by the method given in reference 10. The solution is made
for a forward velocity of 210 miles per hour and a gust velocity of -
10 feet per second. . :

The lift-curve slope used in reference 1 was 5.L41; to be consistent,
the same value was used here. Furthermore, the unsteady-lift function
used for a change in angle of attack in the example presented in refer- .
ence 1 was glven by the equation

(1-0), ¢=1- 0.361e-0+381s

rather than by equation (9). Thus, this equation was also used here.
The gust unsteady-lift function used was that given by equation (10).

The variocus physical constants and the basic response and bending-
moment parsmeters are given in table 1; the values of the unsteady-1ift
function and the values of the gust force are listed in table 2. The

matrices [A], [B], and [C] wused in the solution are given in table 3.

The solution for response is shown in figure 6(a) where the deflec-
tion coefficlents &y and a; in inches are plotted against distance

traveled in half-chords. The corresponding deflection quantities for

the example given in reference 1 were determined and, for comparison,

are also shown in the figure. A similar comparison is made in fig-

ure 6(b) for bending stresses at the fuselage and englne stations, -
stations 0 and 1 from reference 1. The agreement is seen to be good.

Example B.- A second example ig included in order to illustrate one >
mesns by which the method may be used to evaluate the influence of bending
flexibility upon the response to a gust. The physical characteristics for
the alrplane considered in this example are listed also in table 1, and
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equation (9) 1s used for the function 1 - ¢ instead of the values
glven in table 2. Maximum values of the bending moment that develops :
at the fuselage station during flights through sine gusts of various —
lengths have been determined, both for the airplane considered flexible
and for the airplane considered rigid. The results are shown in fig-
ure T(a) where maximum velues of the bending-moment parameter K are
plotted against gust-gradient distance H. The difference between the
two curves represents the incresse in bending moment due to effects of
wing bending flexibility. By taking the ratio of K for the flexible
cage to K for the rigid case, a type of dynamlic response factor is
formulated which gives a direct measure of the influence of wing flexi-
bility. This ratio is designated 7y and is shown in figure 7(b). As

an example of the significance of this plot, the value of yy = 1.16

at H = 5 means that flexibllity results in a l6é-percent dynamic over-
shoot in the stress from the value that would be obtained at H =5 on
the hasis of a rigld-body analysis, It may be seen also that the value
of M is approximately unity for values of H = 10 and greater; there-

fore, in this range of gust-gradient distances a rigld-body treatment
would be sufficient for this airplane.

DISCUSSION

The derlvation presented herein is intended to provide & convenient
engineering method for calculating the response of an airplane to a gust
where wing bending flexibllity is included. The method is believed to be
well-suited for meking trend studies which evaluate, for example, the
effect on response of such factors as mass distribution, speed, and
altitude. Although the unsteady-lift functions for two-dimensional
unsteady flow are presented, the method is general enough so that the
unsteady-1ift functions for finite aspect ratio, for subsonic compress-
ible flow, and for supersonic flow may be used as well. (See refs. T
and 11 to 15.)

Since the numerical method is based on an integration procedure, it
possesses the desirable feature that a fairly large time Interval may be
used and good accuracy still obtained. As an accuracy test, solutions of
equations (16) and (17) were made for several cases by the exact Laplace
transform method as well as by the numerical process, in which process
the time interval was selected according to the rule of thumb suggested.
When the results were plotted to three figures, the difference between
the two solutions was barely discernible. '

Additional bending modes could be included in the analysis but this
refinement 1s really not warranted. Some calculations made with addi-
tional modes gave results which differed only slightly from the results
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obtained when only the fundamental mode was used. The good agreement

of results obtained in example A with the results obtained by the more
precise method given in reference 1 aslso illustrates this point.
Furthermore, if additional degrees of -freedom are to be used, it would
sappear more important to include wing torsion and airplane piltch. The
extent ‘to .which torsion influences the results is probably governed most
by the nearness to the flutter speed. The Importance of airplene pitch
is probably governed most by the gust length; some investigations dealing
with pitch have indicated that except for very light wing loadings the’
pltch of the alrplane does not influence the results appreciably until
gust lengths of from 20 to 30 chords or larger are involved. Thus, the
present analysis, although limited to the degrees of freedom of vertical
motion and wing bending, should probably be sufficlently satisfactory
for speeds near the cruising speed and for gust-gradient distances up to
approximately 10 chords.

The analysis may be useful in assessing the significance of wing
flexibility in the technigque of measuring gust intensity by means of an
airplane. In thig technique gust severity is usually measured by means
of an accelerometer placed at the center line of the airplane. In order
to obtain a rough idea of whether flexibilility may have some effect on
this measurement, cslculations for the maximum accelerations at the
center line and for the maximum acceleration at the nodal points (the
true center-of-gravity acceleration) may be made for various assumed
gust lengths. A comparison of these computed maximum acceleration values
should give some idea as to the extent towhich wing flexibility may

alter the measurements in actual flight.
CONCLUDING REMARKS

The aralysis presented herein for the response of-an dirplane to &
gust should provide a useful means for evaluating the effects of wing
flexibility. A convenient, but accurate, numerical solution of the
responge equations is developed vhich 1s well-sulted for trend studies
such as the evaluation of the effects of mass distrlbution, speed,
altitude, and similar factors. :

As indicated. by an example, the method gives good agreement with
the results of the more precise but more 1engthy recurrence matrix
method of NACA Rep. 1010.

The method permits the evaluation of & gust causing a known response.
A procedure is given wherein the known gust response of one airplane may

dowe g li

A5
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be used directly to determine what the response@would be for another
airplene flying through the same gust condition.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., May 21, 1952,
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APPENDIX

DERIVATION OF EQUATION RELATING DISPLACEMENT TO

PREVIOUS SUCCESSIVE VALUES OF ACCELERATION

In this appendix, a derivation is given of equation (31) which gives
the value of displacement in terms of succégsive past-history values of
ecceleration. Suppose that the second derivative (acceleration) of a
function is epproximated by a suctession of straight-line segments as
shown in the following sketch: )

where the segments cover equal intervals ¢ of the abscissa 8 and the
initial condition that zy" = O is assumed to apply. If a dummy origin

is now considered at the station m - 1, the segment between sta-
tions m - 1 and m may be represented by the equation

Two successive integrations give the relations for z'y, and 2z, as
follows:

" t
Z - 2
1 m m-1 2 [
18t e 8 T ¥

2 Z" - Z"
- " s< m m-1 .3
z2=2p) 5t P 8° + 2zl 18 + Zp 4

Fie
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where the constants of integration =z and zp (initial conditions

1
m=1

for the interval) have been introduced. If 8 1is get equal to ¢ in
- these two equatlons, the following equations result:
2ty = %(z"m + Z"m-l) + 2zt (A1)
2 2 -
_ € 1 [ 1
m= g fnt 3 %ol t 2 1€t Zp (a2)

From these two equations the values of =z'p and 2z, at any time pp—

m
interval may be given in terms of the second derivative at all previous. P
time intervals. TFor example, with initial conditions of 2"y = z'g =0,

equation (Al) becomes for m =1

z'y (43)

and for m =2 . .

m

Z'g = 5(2"2 + Z"l) + Z'l ) -

Combining this equation and equation (A3) results in the relation

2"2)

This process may be carried through for each of the time stations to ——

yvield the following general equation for =z',:

N

zlo = e(z"l +

z'y = e(z"l + 25 + z"3 + ...+ zZ g+ % z"m> (AL)

which, of course, is the trapezoidal spproximation of the area under the T
. z"-curve. Equation (A2) for 2z, may be treated similarly and it is e

found that the general equation for 2z, may be written .

Zp = eg[Em -z + (m=-2)z"s+ . L+ 28" 5+ 2+ % Z"é} (A5)
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This equation thus gives the displacement at any time station 1n terms
of the accelerations at all previous time stations.

It msy be noted that, if higher-order. segments (parabolic or cubic)
had been used instead of straight-line segments to approximate the
second derivative, equations similar in form to equations (A4) and (AB)
would also result, For most practical purposes, however, the accuracy
of equation (A5) is sufficiently good as long as the interval ¢ is
chosen so that the straight-line segments roughly approximate the second
derivative. ' :

i

’ll o'

i

i it
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PHYSICAL CHARACTERISTICS FOR EXAMPLE ATRPLANES

Example A

Example B

W, 1b .
s, f£t2
b, in.

Cor in.

p, 1b/ft3
V, ft/sec

U, ft/sec . .

BEC 4 « . .
half-chords

rl « .
1'2 « . .

r3_{%uselage station

engine station

fuselage station

engine station

fuselage station

engine station

*z
2, in
J 1

I

-3}fuselage station
engine station

37,450
870
1120
154

0.0765
308
10

0.0208
1.0
5.41
64,16
0.9045

0.4353
0.2181

0.1358

0. 452
0.547

23.49
10.19

3.665
3.391

0.00537
0. 00669

33,450
870
1120
164

0.0765
374

*
2 here denotes distance from

exis to extreme fiber.

“!ﬂi’!”
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TABLE 2.- 1 - ¢ ORDINATES AND GUST-FORCE ORDINATES

FOR SHARP-EDGE GUST, € = 1.0

m fp or (1 - °)A=6 f or V
0 0.6390 0

1 .T534 <377
2. .8315 - «ShT
3 .88k49 .635
L .921h . 692
2 9463 . T36
6 .9633 CTTL
7 9749 798 )
8 .9829 821
9 .9883 845
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6k, 799

1.5068
1.6630
1.7698
1.8428
1.8926
1.9266
1.9498
1.9658
1.9766

[ 6. 1394
.3286

.ho19
L4128
.beo2
252
4287
L4311

4,5367
1.3954
2,245
3.0735
3.8889
k. 6949
5. 4947
6.2900
7.0824

7.8726

6%. 799

TABLE 3.- MATRICES USED IN EXAMPIE A

1.5068 6k4.799

1.6630
1.7698
1.8428
1.8926
1.9266
1.9498
1.9658

0.139%
.3286
. 3627
. 3860
.4o19
.4128
. k202
Jes2
L4287

L.5367
1.3954
2,245
3.0735
3.8889
- 4, 6049
5.49Lk7
6.2900
7.0824

1.5068
1.6630
1.7698
1.8428
1.8926
1.9266
1.9498

0.139%
.3286
.3627
.3860
4019

:haoz
.bo52

4.5367
1.3954
2,245
3.0735
3.8889
L, 6949
5. 49kT
6.2900

64.799
1.5068
1.6630
1.7698
1.8428

1.8926
1.9266

0.139%
.3286
. 3627
.3860
L4019

:h202

4.5367
1.3954
2,245
3.0735
3.8889
4. 6949
5. 4947

A Matrix

6k. 799

1.5068 64.799

1.6630 1.5068 64.799

1.7698 1.6630 1.5068 6k.T99

1.8%28 1.7698 1.6630 1.5068 6%.T799

1.8926 1.8428 1.7698 1.6630 1.5068 64,799

B Matrix

0.1394
.3286
.3627
. 3860

Jho19

L4128

0.139%
.3286
. 3627
.3860
.holg

C Matrix

4.5367
1.3954
2,245
3.0735
* 3.8889
4. 69hg

k,5367
1.3954
2.2hkL5
3.0735
3.8889

0.139%
.3286 0.1394
.3627 .3286 0.1394

.3860 .3627 .3286 0.139%

L.5367
1.3954 Lk.5367
2.24h5 1.395% L.5367

3.0735 2.2445 11,3954 4.536?_

~NACA
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MM
Engine
Fuselage 4960
10140 Ib b Fuel
1245 Ib
' {L Structural weight 2380 [b . —
.E_ |
: g
¢
Figure 3- Semispan weight disiribution for the two-engine airplane of
example A.
12

Wing chord, 8
ft

|
l6
ing station, Y-
Wing station B

. 4L L I
0 2 4

Figure4:-Wing chord distribution for airplane of example A.
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— Present analysis
——= Reference |

9% and a,,

Present analysis
and reference |

k7

6 - Fuselage station

————
-

Stress, ksi

L ] ! ] i I
5 6 7 8 9 10
s, Half-chords
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Figure 6.- Response of example airplane A to a 10-foot-per-second shorp-edge gust.
V=2I0 miles per hour.
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Figure 7 - Bending moment and dynamic response factor for airpiane

of example B due to flight through sine gusts.
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